noether.core.schemas.modules.encoders¶
Classes¶
Module Contents¶
- class noether.core.schemas.modules.encoders.SupernodePoolingConfig(/, **data)¶
Bases:
pydantic.BaseModel- Parameters:
data (Any)
Hidden dimension for positional embeddings, messages and the resulting output vector.
- input_dim: int = None¶
Number of positional dimension (e.g., input_dim=2 for a 2D position, input_dim=3 for a 3D position)
- radius: float | None = None¶
Radius around each supernode. From points within this radius, messages are passed to the supernode.
- k: int | None = None¶
Number of neighbors for each supernode. From the k-NN points, messages are passed to the supernode.
- spool_pos_mode: Literal['abspos', 'relpos', 'absrelpos'] = None¶
absolute space (“abspos”), relative space (“relpos”) or both (“absrelpos”).
- Type:
Type of position embedding
- init_weights: noether.core.types.InitWeightsMode = None¶
Weight initialization of linear layers. Defaults to “truncnormal002”.
- readd_supernode_pos: bool = None¶
If true, the absolute positional encoding of the supernode is concatenated to the supernode vector after message passing and linearly projected back to hidden_dim. Defaults to True.
- aggregation: Literal['mean', 'sum'] = None¶
Aggregation for message passing (“mean” or “sum”).
- message_mode: Literal['mlp', 'linear', 'identity'] = None¶
How messages are created. “mlp” (2 layer MLP), “linear” (nn.Linear), “identity” (nn.Identity). Defaults to “mlp”.
- input_features_dim: int | None = None¶
Number of input features per point. None will fall back to a version without features. Defaults to None, which means no input features.
- validate_radius_and_k()¶